
Install and Configure OpenVPN Client
Install and Configure Fail2Ban on Ubuntu 18.04
Install and Configure PureFTPd Ubuntu 18.04
How To Setup a Firewall with UFW on an Ubuntu and Debian Cloud Server
How to Install and Configure KVM on Ubuntu 18.04 LTS
Installing NUT (Network UPS Tools) on Ubuntu 18.04 LTS
Upgrade php 7.3 Ubuntu 18.04 LTS
Setup NTP Server using NTPd on Ubuntu 20.04/18.04
Ubuntu Add and Delete Users
Install and Configure xmrig for Monero XMR Crypto Mining
Upgrade Ubuntu 20.04 Linux Kernel
Freeing Inode Usage

Ubuntu

Generate .ovpn file on OpenVPN server and copy to OpenVPN client machine
Run the command below to connect:

Generate .ovpn file on OpenVPN server and copy to OpenVPN client machine under
/etc/openvpn directory as a .conf file. For example, if you have a my-server.ovpn file you
would run the following command:

Create credentials file in /etc/openvpn/my-server-creds.txt

Enter the username and password each one in a separate line like below:

Save the file
Edit /etc/openvpn/my-server.conf file:

Install and Configure
OpenVPN Client
Install OpenVPN client

apt install openvpn -y

Manually connect to OpenVPN server

openvpn --config client.ovpn

Automatically connect to OpenVPN server

cp my-server.ovpn /etc/openvpn/my-server.conf

vi /etc/openvpn/my-server-creds.txt

openvpn_username

somepassword

Locate the auth-user-pass line in the file and add the credentials file filename next to it
like below:

Save the file
Edit /etc/default/openvpn:

Uncomment the following line (remove the # from the front) :

Save the file
Restart the OpenVPN service on the OpenVPN client:

Reboot the OpenVPN Client server and ensure it connects automatically

vi /etc/openvpn/my-server.conf

...

auth-user-pass my-server-creds.txt

...

vi /etc/default/openvpn

AUTOSTART="all"

systemctl restart openvpn

Installing fail2ban can be done with a single command:

When that command finishes, fail2ban is ready to go. You'll want to start and enable the service
with the commands:

Configuring a jail

Next we're going to configure a jail for SSH login attempts. In the /etc/fail2ban directory, you'll find
the jail.conf file. Do not edit this file. Instead, we'll create a new file, jail.local by copying the
jail.conf to it, and override any similar settings in jail.conf. Our new jail configuration will monitor
/var/log/auth.log, use the fail2ban sshd filter, set the SSH port to 22, and set the maximum retry to
3. To do this, issue the command:

locate the [sshd] section, and edit to match the following contents:

Next, locate and uncomment the ignoreip variable and set it as below where 192.xxx.xxx.xxx is
your IP address. Enter multiple addresses and/or networks separated by a space:

Install and Configure
Fail2Ban on Ubuntu 18.04

sudo apt-get install -y fail2ban

sudo systemctl start fail2ban

sudo systemctl enable fail2ban

sudo cp /etc/fail2ban/jail.conf /etc/fail2ban/jail.local

[sshd]

enabled = true

port = 22

filter = sshd

logpath = /var/log/auth.log

maxretry = 3

bantime = 604800 # ban for 7 days

Save and close that file. Restart fail2ban with the command:

At this point, if anyone attempts to log into your Ubuntu Server via SSH, and fails three times, they
will be prevented from entry, by way of iptables blocking their IP Address.

Testing and unbanning

You can test to make sure the new jail works by failing three attempts at logging into the server,
via ssh. After the third failed attempt, the connection will hang. Hit [Ctrl]+[c] to escape and then
attempt to SSH back into the server. You should no longer be able to SSH into that server from the
IP address you were using.

You can then unban your test IP address with the following command:

where IP_ADDRESS is the banned IP Address.

You should now be able to log back into the server with SSH.

ignoreip = 127.0.0.1/8 ::1 192.xxx.xxx.xxx

sudo systemctl restart fail2ban

sudo fail2ban-client set sshd unbanip IP_ADDRESS

Install the PureFTPd :

Edit /etc/inetd.conf file and comment out (add a # at the start of) the line containing ftp if such
an entry exists:

Edit /etc/default/pure-ftpd-common and verify the STANDALONE_OR_INETD=standalone
entry is set:

Add a "ftpgroup" in the system:

Add a "ftpuser" user in the system:

Add a virtual PureFTPd user. I'm going to use "joe" as an example:

where /name/of/directory is the directory where you want user joe to have FTP access. This
directory is where user joe is going to be locked in once they log on the server with FTP. Whether
you create a directory for joe to have access or you use an existing directory, ensure the
user/group ftpuser/ftpgroup you created earlier is the owner of that directory as follows:

Now, create the PureFTPd virtual user database:

Install and Configure
PureFTPd Ubuntu 18.04

sudo apt-get install pure-ftpd -y

sudo vi /etc/inetd.conf

sudo vi /etc/default/pure-ftpd-common

sudo groupadd ftpgroup

sudo useradd -g ftpgroup -d /dev/null -s /etc ftpuser

sudo pure-pw useradd joe -u ftpuser -d /name/of/directory

chown -R ftpuser:ftpgroup /name/of/directory

Create the following symbolic links for PureFTPd to funtion properly:

Ensure that the file /etc/pure-ftpd/conf/UnixAuthentication file only contains the word no:

Restart PureFTPd before changes take effect:

PureFTPd on Ubuntu/Debian distros use the pure-ftpd-wrapper which will parse any properly named
file in the "/etc/pure-ftpd/conf" directory and read the values and in turn pass to the pure-ftpd
daemon. This eliminates the need editing long configuration files. There are a lot of files that can
be placed in the "/etc/pure-ftpd/conf" directory for different configuration options, but I'm only
going to concentrate on a handful. For a complete list of all the files refer to the following
http://manpages.ubuntu.com/manpages/har ... per.8.html link.

Passive mode can be enabled by simply issuing the following from the command line for setting a
range of 30000 through 31000:

If you wish to set PureFTPd to listen to a specific port number, issue the following from the
command line. In this example we set port number "666" as the FTP port:

sudo pure-pw mkdb

sudo ln -s /etc/pure-ftpd/pureftpd.passwd /etc/pureftpd.passwd

sudo ln -s /etc/pure-ftpd/pureftpd.pdb /etc/pureftpd.pdb

sudo ln -s /etc/pure-ftpd/conf/PureDB /etc/pure-ftpd/auth/PureDB

sudo vi /etc/pure-ftpd/conf/UnixAuthentication

sudo /etc/init.d/pure-ftpd restart

Configure PureFTPd Options

Passive Mode Port Range

echo 30000 31000 > /etc/pure-ftpd/conf/PassivePortRange

Bind to specific address and port number

echo 192.168.xxx.xxx,666 > /etc/pure-ftpd/conf/Bind

http://manpages.ubuntu.com/manpages/hardy/man8/pure-ftpd-wrapper.8.html

I highly recommend you set this option in PureFTPd. This will disable the server trying to resolve
the client's hostname. If it's not set, the server will sometimes throw a 425 Invalid Address given
errors. Setting this option will fix those errors as well as speed up logins.

If you are behind a NAT, it’s recommended you set the public IP address of your PureFTPd server as
follows:

The FTP protocol in general is very insecure. The username/passwords are sent using clear text and
the data transfers are also insecure. Enabling TLS will allow you to secure your FTP sessions to
include the username/passwords as well as the data transfers.

Install OpenSSL:

If you want to accept plain AND TLS sessions, issue the following on the command line:

If you want to accept TLS sessions ONLY, issue the following on the command line:

Create a "private" directory under "/etc/ssl/" if one doesn't exist yet:

Generate a self-signed certificate as follows:

Disable name resolution in PureFTPd

echo 'yes' > /etc/pure-ftpd/conf/DontResolve

Set passive IP in PureFTPd

echo '1.2.3.4' > /etc/pure-ftpd/conf/ForcePassiveIP

Enable TLS on PureFTPd

sudo apt-get install openssl -y

echo 1 > /etc/pure-ftpd/conf/TLS

echo 2 > /etc/pure-ftpd/conf/TLS

Create the SSL certificate for TLS

mkdir /etc/ssl/private

Fill in the certificate information as required.

For 3rd party SSL certificates, enter the private key and corresponding chain certs in the following
order inside /etc/ssl/private/pure-ftpd.pem:

You may see the following warning when trying to connect to your PureFTPd server:

openssl req -x509 -nodes -days 7300 -newkey rsa:2048 -keyout /etc/ssl/private/pure-ftpd.pem -

out /etc/ssl/private/pure-ftpd.pem

-----BEGIN RSA PRIVATE KEY-----

(Private Key)

-----END RSA PRIVATE KEY-----

-----BEGIN CERTIFICATE-----

(Primary SSL certificate)

-----END CERTIFICATE-----

-----BEGIN CERTIFICATE-----

(Intermediate certificate)

-----END CERTIFICATE-----

-----BEGIN CERTIFICATE-----

(Root certificate)

-----END CERTIFICATE-----

Troubleshooting

[WARNING] Can't login as [joe]: account disabled

"Sorry, but I can't trust you"

[WARNING] Can't login as [joe]: account disabled (uid < 1021)

These two warnings occur if your system set the UserID (UID) and/or GroupID (GID) associated with
the ftpuser user are below 1000. To see what the current values are, type the following at a shell:

Should output similar to below:

The actual numbers don't matter much, but they should be equal or higher than 1000 for PureFTPd
to be happy. To fix the UserID (UID) portion, open a shell and type:

To fix the GroupID (GID):

Additionally, you can set the MinUID that PureFTPd expects by setting the following:

Ensure to restart the Pure-FTPD daemon:

The commands below are for performing common tasks with the PureFTPd user database. This
assumes that username is the PureFTPd virtual user you are managing, ftpuser is the system
user you are associating the virtual user with and /name/of/directory is the directory you want
that virtual user to have access.

Remember that after every change in the PureFTPd database, you MUST commit the changes by
typing sudo pure-pw mkdb and always make sure that ftpuser/ftpgroup are the owners of
whatever directory you want that user to have access:

id ftpuser

uid=572(ftpuser) gid=972(ftpgroup) groups=972(ftpgroup)

sudo usermod -u 1021 -p -U ftpuser

sudo groupmod -g 1021 ftpgroup

echo 1021 > /etc/pure-ftpd/conf/MinUID

systemctl restart pure-ftpd

Manage PureFTPd Users

Add Users:
sudo pure-pw useradd username -u ftpuser -d /name/of/directory

Change User Password:
sudo pure-pw passwd username

Show User Details:
sudo pure-pw show username

Delete user:
sudo pure-pw userdel username

Update PureFTPd Virtual User Database:
sudo pure-pw mkdb

UFW, or Uncomplicated Firewall, is a front-end to iptables. Its main goal is to make managing your
firewall drop-dead simple and to provide an easy-to-use interface. It’s well-supported and popular
in the Linux community—even installed by default in a lot of distros. As such, it’s a great way to get
started securing your sever.

First, obviously, you want to make sure UFW is installed. It should be installed by default in Ubuntu,
but if for some reason it’s not, you can install the package using aptitude or apt-get using the
following commands:

or

You can check the status of UFW by typing:

Right now, it will probably tell you it is inactive. Whenever ufw is active, you’ll get a listing of the
current rules that looks similar to this:

Status: active

How To Setup a Firewall with
UFW on an Ubuntu and
Debian Cloud Server
What is UFW?

Before We Get Started

sudo aptitude install ufw

sudo apt-get install ufw

Check the Status

sudo ufw status

To Action From

-- ------ ----

22 ALLOW Anywhere

If your VPS is configured for IPv6, ensure that UFW is configured to support IPv6 so that will
configure both your IPv4 and IPv6 firewall rules. To do this, open the UFW configuration with this
command:

Then make sure "IPV6" is set to "yes", like so:

Save and quit. Then restart your firewall with the following commands:

Now UFW will configure the firewall for both IPv4 and IPv6, when appropriate.

One of the things that will make setting up any firewall easier is to define some default rules for
allowing and denying connections. UFW’s defaults are to deny all incoming connections and allow
all outgoing connections. This means anyone trying to reach your cloud server would not be able to
connect, while any application within the server would be able to reach the outside world. To set
the defaults used by UFW, you would use the following commands:

and

Note: if you want to be a little bit more restrictive, you can also deny all outgoing requests as well.
The necessity of this is debatable, but if you have a public-facing cloud server, it could help prevent

Using IPv6 with UFW

sudo vi /etc/default/ufw

IPV6=yes

sudo ufw disable

sudo ufw enable

Set Up Defaults

sudo ufw default deny incoming

sudo ufw default allow outgoing

against any kind of remote shell connections. It does make your firewall more cumbersome to
manage because you’ll have to set up rules for all outgoing connections as well. You can set this as
the default with the following:

The syntax is pretty simple. You change the firewall rules by issuing commands in the terminal. If
we turned on our firewall now, it would deny all incoming connections. If you’re connected over
SSH to your cloud server, that would be a problem because you would be locked out of your server.
Let’s enable SSH connections to our server to prevent that from happening:

As you can see, the syntax for adding services is pretty simple. UFW comes with some defaults for
common uses. Our SSH command above is one example. It’s basically just shorthand for:

This command allows a connection on port 22 using the TCP protocol. If our SSH server is running
on port 2222, we could enable connections with the following command:

Now is a good time to allow some other connections we might need. If we’re securing a web server
with FTP access, we might need these commands:

You mileage will vary on what ports and services you need to open. There will probably be a bit of
testing necessary. In addition, you want to make sure you leave your SSH connection allowed.

sudo ufw default deny outgoing

Allow Connections

sudo ufw allow ssh

sudo ufw allow 22/tcp

sudo ufw allow 2222/tcp

Other Connections We Might Need

sudo ufw allow www

sudo ufw allow 80/tcp

sudo ufw allow ftp

sudo ufw allow 21/tcp

You can also specify port ranges with UFW. To allow ports 1000 through 2000, use the command:

If you want UDP:

You can also specify IP addresses. For example, if I wanted to allow connections from a specific IP
address (say my work or home address), I’d use this command:

Our default set up is to deny all incoming connections. This makes the firewall rules easier to
administer since we are only selectively allowing certain ports and IP addresses through. However,
if you want to flip it and open up all your server’s ports (not recommended), you could allow all
connections and then restrictively deny ports you didn’t want to give access to by replacing “allow”
with “deny” in the commands above. For example:

would allow access to port 80 while:

would deny access to port 80.

There are two options to delete rules. The most straightforward one is to use the following syntax:

Port Ranges

sudo ufw allow 1000:2000/tcp

sudo ufw allow 1000:2000/udp

IP Addresses

sudo ufw allow from 192.168.255.255

Denying Connections

sudo ufw allow 80/tcp

sudo ufw deny 80/tcp

Deleting Rules

sudo ufw delete allow ssh

As you can see, we use the command “delete” and input the rules you want to eliminate after that.
Other examples include:

or

This can get tricky when you have rules that are long and complex.

A simpler, two-step alternative is to type:

which will have UFW list out all the current rules in a numbered list. Then, we issue the command:

where “[number]” is the line number from the previous command.

After we’ve gotten UFW to where we want it, we can turn it on using this command (remember: if
you’re connecting via SSH, make sure you’ve set your SSH port, commonly port 22, to be allowed
to receive connections):

You should see the command prompt again if it all went well. You can check the status of your
rules now by typing:

or

for the most thorough display.

To turn UFW off, use the following command:

sudo ufw delete allow 80/tcp

sudo ufw delete allow 1000:2000/tcp

sudo ufw status numbered

sudo ufw delete [number]

Turn It On

sudo ufw enable

sudo ufw status

sudo ufw status verbose

If, for whatever reason, you need to reset your cloud server’s rules to their default settings, you
can do this by typing this command:

sudo ufw disable

Reset Everything

sudo ufw reset

Original How-To URL: https://www.linuxtechi.com/install-configure-kvm-ubuntu-18-04-server/

KVM (Kernel-based Virtual Machine) is an open source full virtualization solution for Linux like
systems, KVM provides virtualization functionality using the virtualization extensions like Intel VT
 or AMD-V. Whenever we install KVM on any linux box then it turns it into the hyervisor by loading
the kernel modules like kvm-intel.ko(for intel based machines) and kvm-amd.ko (for amd
based machines).

KVM allows us to install and run multiple virtual machines (Windows & Linux). We can create and
manage KVM based virtual machines either via virt-manager graphical user interface or virt-
install & virsh cli commands.

In this article we will discuss how to install and configure KVM hypervisor on Ubuntu 18.04 LTS
server. I am assuming you have already installed Ubuntu 18.04 LTS server on your system. Login to
your server and perform the following steps.

Execute below egrep command to verify whether your system supports hardware virtualization or
not,

If the output is greater than 0 then it means your system supports Virtualization else reboot your
system, then go to BIOS settings and enable VT technology.

Now Install “kvm-ok” utility using below command, it is used to determine if your server is capable
of running hardware accelerated KVM virtual machines

How to Install and Configure
KVM on Ubuntu 18.04 LTS

Verify Whether your system support
hardware virtualization

egrep -c '(vmx|svm)' /proc/cpuinfo

1

https://www.linuxtechi.com/install-configure-kvm-ubuntu-18-04-server/

Run kvm-ok command and verify the output,

KVM acceleration can be used

Run the below apt commands to install KVM and its dependencies

Once the above packages are installed successfully, then your local user (In my case linuxtechi)
will be added to the group libvirtd automatically.

Whenever we install qemu & libvirtd packages in Ubuntu 18.04 Server then it will automatically
start and enable libvirtd service, In case libvirtd service is not started and enabled then run
beneath commands,

Now verify the status of libvirtd service using below command,

Output would be something like below:

sudo apt install cpu-checker

sudo kvm-ok

INFO: /dev/kvm exists

Install KVM and its required packages

sudo apt update

sudo apt install qemu qemu-kvm libvirt-bin bridge-utils virt-manager

Start & enable libvirtd service

sudo service libvirtd start

sudo update-rc.d libvirtd enable

service libvirtd status

Network bridge is required to access the KVM based virtual machines outside the KVM hypervisor
or host. In Ubuntu 18.04, network is managed by netplan utility, whenever we freshly installed
Ubuntu 18.04 server then netplan file is created under /etc/netplan/. In most of the hardware and
virtualized environment, netplan file name would be “50-cloud-init.yaml” or “01-netcfg.yaml”,
to configure static IP and bridge, netplan utility will refer this file.

As of now I have already configured the static IP via this file and content of this file is below:

Let’s add the network bridge definition in this file:

network:
 ethernets:
 ens33:
 addresses: [192.168.0.51/24]
 gateway4: 192.168.0.1
 nameservers:
 addresses: [192.168.0.1]
 dhcp4: no
 optional: true
 version: 2

Configure Network Bridge for KVM virtual
Machines

sudo vi /etc/netplan/50-cloud-init.yamlnetwork:

https://docs.deeztek.com/uploads/images/gallery/2020-11/2020-11-17-14-13-01-ubuntu-files-deeztek-llc-cloud-vivaldi.png

version: 2
 ethernets:
 ens33:
 dhcp4: no
 dhcp6: no

 bridges:
 br0:
 interfaces: [ens33]
 dhcp4: no
 addresses: [192.168.0.51/24]
 gateway4: 192.168.0.1
 nameservers:
 addresses: [192.168.0.1]

As you can see we have removed the IP address from interface(ens33) and add the same IP to the
bridge ‘br0‘ and also added interface (ens33) to the bridge br0. Apply these changes using below
netplan command,

If you want to see the debug logs then use the below command,

Now Verify the bridge status using following methods:

There are two ways to create virtual machine:

virt-manager (GUI utility)
virt-install command (cli utility)

Start the virt-manager by executing the beneath command,

sudo netplan apply

sudo netplan --debug apply

sudo networkctl status -a

ifconfig

Creating Virtual machine with virt-
manager

sudo virt-manager

Create a new virtual machine
Click on forward and select the ISO file, in my case I am using RHEL 7.3 iso file.
Click on Forward
In the next couple of windows, you will be prompted to specify the RAM, CPU and disk for
the VM.
Now Specify the Name of the Virtual Machine and network,
Click on Finish

Now follow the screen instruction and complete the installation,

Use the below virt-install command to create a VM from terminal, it will start the installation in CLI,
replace the name of the VM, description, location of ISO file and network bridge as per your setup.

Creating Virtual machine from CLI using
virt-install command

sudo virt-install -n DB-Server --description "Test VM for Database" --os-type=Linux --os-

variant=rhel7 --ram=1096 --vcpus=1 --disk

path=/var/lib/libvirt/images/dbserver.img,bus=virtio,size=10 --network bridge:br0 --graphics

none --location /home/linuxtechi/rhel-server-7.3-x86_64-dvd.iso --extra-args console=ttyS0

Original How-To URL: https://zackreed.me/installing-nut-on-ubuntu/

Installing NUT (Network UPS
Tools) on Ubuntu 18.04 LTS

Install Nut
apt-get install nut

Edit /etc/nut/ups.conf
vi /etc/nut/ups.conf

Paste the foollowing at the bottom. Mine’s
an APC-1500, so I’ve set it to a
recognizable name (apc-1500)

[apc-1500]

driver = usbhid-ups

port = auto

Create the following directories and
reboot machine

mkdir /var/run/nut

chown root:nut /var/run/nut

https://zackreed.me/installing-nut-on-ubuntu/

Edit /etc/nut/nut.conf:

Enter the following:

chmod 770 /var/run/nut

Start NUT
upsdrvctl start

Should give the following output
Network UPS Tools - UPS driver controller 2.4.3

Network UPS Tools - Generic HID driver 0.34 (2.4.3)

USB communication driver 0.31

Using subdriver: APC HID 0.95

Setup NUT to listen on Port 3493
vi /etc/nut/upsd.conf

Add the following lines where
<IPADDRESS> is the IP of your machine

LISTEN 127.0.0.1 3493

LISTEN ::1 3493

LISTEN <IPADDRESS> 3493

Set the mode

vi /etc/nut/nut.conf

MODE=netserver

OL means your system is running On Line power. If you want to see all the info, try this instead

Should output the following

Start the network data server
upsd

Check the status
upsc apc-1500@localhost ups.status

Should output the following
OL

upsc apc-1500@localhost

...

battery.charge: 100

battery.charge.low: 10

battery.charge.warning: 50

battery.date: 2054/00/39

battery.mfr.date: 2008/10/20

Disable the beeper if needed
upscmd apc beeper.disable

Setup users to access the info and make
changes.

vi /etc/nut/upsd.users

Add monitor master user and a monitor
slave user for remote machines

[monuser]

 password = PASSWORD_REPLACE

 actions = SET FSD

 instcmds = ALL

 upsmon master

 # or upsmon slave

[monuserslave]

 password = slave

 upsmon slave

Reload upsd
upsd -c reload

Setup upsmon for our machine
vi /etc/nut/upsmon.conf

MODE=standalone

Start NUT

service nut start

Install NUT

vi /etc/nut/nut.conf

MODE=netclient

vi /etc/nut/upsmon.conf

Paste the following
MONITOR apc-1500@localhost 1 local_mon PASSWORD_REPLACE master

Setup Nut in standalone mode
vi /etc/nut/nut.conf

Paste the following

Setting up a Client (Slave) Computer

apt-get install nut

Edit /etc/nut/nut.conf

Paste the following

Set your upsmon.conf to match the setup for your
monuserslave above and the ip address of your
master nut-server

MONITOR apc-1500@<IPADDRESS> 1 monuserslave <PASSWORD> slave

service nut-client restart

upsc apc-1500@<IPADDRESS>

Init SSL without certificate database

battery.charge: 100

battery.charge.low: 10

battery.charge.warning: 50

battery.date: 2054/00/39

battery.mfr.date: 2008/10/20

battery.runtime: 156

battery.runtime.low: 360

battery.type: PbAc

battery.voltage: 26.7

battery.voltage.nominal: 24.0

device.mfr: American Power Conversion

device.model: Back-UPS RS 1500 LCD

device.serial: 8B0843R44379

Paste the following where <IPADDRESS> is the ip of
your NUT Server and <PASSWORD> is the password
of your monuserslave password from above

Restart your nut-client

Test with the following command where
<IPADDRESS> is the IP of your NUT server

Should output the following

device.type: ups

driver.name: usbhid-ups

driver.parameter.pollfreq: 30

driver.parameter.pollinterval: 2

driver.parameter.port: auto

driver.version: 2.6.4

driver.version.data: APC HID 0.95

driver.version.internal: 0.37

input.sensitivity: medium

input.transfer.high: 139

input.transfer.low: 88

input.voltage: 122.0

input.voltage.nominal: 120

ups.beeper.status: disabled

ups.delay.shutdown: 20

ups.firmware: 839.H7 .D

ups.firmware.aux: H7

ups.load: 29

ups.mfr: American Power Conversion

ups.mfr.date: 2008/10/20

ups.model: Back-UPS RS 1500 LCD

ups.productid: 0002

ups.realpower.nominal: 865

ups.serial: 8B0843R44379

ups.status: OL LB

ups.test.result: No test initiated

ups.timer.reboot: 0

ups.timer.shutdown: -1

ups.vendorid: 051d

Upgrade php 7.3 Ubuntu
18.04 LTS
Since Ubuntu 18.04 comes with php 7.2, you must install
from the ppa:ondrej repository:

sudo add-apt-repository ppa:ondrej/php

sudo apt update

sudo apt install php7.3

Install all the existing php 7.2 modules on php 7.3:
sudo apt install $(apt list --installed | grep php7.2- | cut -d'/' -f1 | sed -e 's/7.2/7.3/g')

Remove old PHP version:
apt purge php7.2 php7.2-common

If running Apache disable existing Apache php7.2 mod:
a2dismod php7.2

Enable Apache php7.3 mod:
a2enmod php7.3

Restart Apache:
systemctl restart apache2

In this tutorial, you will learn how to install and setup NTP server using NTPd on Ubuntu
20.04/18.04. Network Time Protocol is a networking protocol that is used to synchronize system
clocks on a network. NTP uses clock stratum scheme to enable access to correct time sources. The
stratums are numbered from 0 to 15, where the devices at stratum 0 are highly accurate time-
keeping hardware devices and the latter is true. The stratums usually have NTP clients. An NTP
client can also be configured as a server in a customized environment.

This guide will cover on how to install and setup NTP server using NTPd on ubuntu 20.04/18.04.
NTP daemon (ntpd) is an NTP client program.

NTP client employs a server-client architecture where NTP clients synchronize time from NTP
server(s).

Before you can install and setup NTP Server using NTPd on Ubuntu 20.04/18.04, you need to
update your package cache in order to install the latest version of ntp.

Setup NTP Server using
NTPd on Ubuntu 20.04/18.04

Credit: cr00t

Setup NTP Server using NTPd on
Ubuntu 20.04/18.04
Run System Update

sudo apt update -y

Install NTPd on Ubuntu 20.04/18.04

http://www.ntp.org/
https://kifarunix.com/author/cr00t/

Once the update is done, proceed to install NTP daemon on Ubuntu 20.04/18.04. The ntpd daemon
is provided by the ntp package.

To check if ntp package is installed on Ubuntu 18.04/20.04 run the command:

If the package is not installed you will get output similar to:

The ntp package is available on the default Ubuntu 18.04 and Ubuntu 20.04 repositories.

Install ntp on Ubuntu 20.04/18.04 by running the command:

Verify that that ntp package has been installed successfully by checking the version number:

Output:

After installation NTP is started and enabled to start at boot time:

 dpkg -l ntp

dpkg-query: no packages found matching ntp

sudo apt install ntp -y

sntp --version

sntp 4.2.8p12@1.3728-o (1)

Running NTPd on Ubuntu 20.04/18.04

systemctl status ntp

● ntp.service - Network Time Service

 Loaded: loaded (/lib/systemd/system/ntp.service; enabled; vendor preset: e>

 Active: active (running) since Sun 2020-10-11 20:09:21 EAT; 55min ago

 Docs: man:ntpd(8)

 Main PID: 567 (ntpd)

 Tasks: 2 (limit: 585)

 Memory: 1.5M

 CGroup: /system.slice/ntp.service

 └─567 /usr/sbin/ntpd -p /var/run/ntpd.pid -g -u 127:133

NTP daemon (ntpd) main configuration file is /etc/ntp.conf . The file is configured to enable NTP
server to fetch the correct time from NTP servers of higher stratum such as pool.ntp.org. The
pool directive in the file enables setting of NTP time servers (pool) to use.

sudo vim /etc/ntp.conf

By default NTP on Ubuntu 20.04/18.04 uses ubuntu pool time servers from the NTP servers
pool.ntp.org as seen from the above output. A list of time servers can be found at NTP Public Pool
Time Servers where one can choose which timeserver to use according to their timezone. For
example to use ke.pool.ntp.org pool:

First comment out the default ubuntu pool timeservers:

Onk 11 20:10:28 computers-VirtualBox ntpd[567]: Soliciting pool server 162.159.>

Onk 11 20:10:29 computers-VirtualBox ntpd[567]: Soliciting pool server 160.119.>

Onk 11 20:10:29 computers-VirtualBox ntpd[567]: Soliciting pool server 162.159.>

Onk 11 20:10:29 computers-VirtualBox ntpd[567]: Soliciting pool server 162.159.>

...

Setup NTP Server using NTPd on Ubuntu
20.04/18.04
Configure NTP Server on Ubuntu 20.04/18.04

Specify one or more NTP servers.

Use servers from the NTP Pool Project. Approved by Ubuntu Technical Board

on 2011-02-08 (LP: #104525). See http://www.pool.ntp.org/join.html for

more information.

pool 0.ubuntu.pool.ntp.org iburst

pool 1.ubuntu.pool.ntp.org iburst

pool 2.ubuntu.pool.ntp.org iburst

pool 3.ubuntu.pool.ntp.org iburst

Use Ubuntu's ntp server as a fallback.

pool ntp.ubuntu.com

...

more information.

http://www.pool.ntp.org/en/
http://www.pool.ntp.org/en/

To add up servers from the ke.pool.ntp.org pool add the following entry on the configuration file:

TIP: Setting the pool as pool.ntp.org allows the system to determine the nearest time servers to
use.

iburst option in the configuration file changes the initial interval of polls to a NTP server in order to
speed up the initial synchronization.

NTP server can optionally be configured to only allow specific NTP client connections to query them
using the restrict directive in the /etc/ntp.conf configuration file which uses the syntax:

This access control can be used to limit access to NTP service to particular LAN. For instance to
only allow connections from the network 192.168.56.0/24, define the network address by
appending the line:

Where:

nomodify options prevents any changes to the configuration.
notrap option prevents ntpdc control message protocol traps.

#pool 0.ubuntu.pool.ntp.org iburst

#pool 1.ubuntu.pool.ntp.org iburst

#pool 2.ubuntu.pool.ntp.org iburst

#pool 3.ubuntu.pool.ntp.org iburst

Use Ubuntu's ntp server as a fallback.

#pool ntp.ubuntu.com

...

...

#Use kenyan pool

pool 0.ke.pool.ntp.org iburst

pool 1.ke.pool.ntp.org iburst

pool 2.ke.pool.ntp.org iburst

pool 3.ke.pool.ntp.org iburst

...

Configure Access Control for NTP Server (Optional)

restrict address [mask mask] [other options]

restrict 192.168.56.0 mask 255.255.255.0 nomodify notrap

More about restrict and other command options can be read on man ntp.conf .

Save the configuration file and restart NTP server for the changes to take effect.

Check the status of NTP service

Output:

Confirm NTP service is set to start at boot time:

If disabled, enable it by running the command below;

 sudo systemctl restart ntp

 systemctl status ntp

 ntp.service - Network Time Service

 Loaded: loaded (/lib/systemd/system/ntp.service; enabled; vendor preset: enabled)

 Active: active (running) since Tue 2020-10-20 19:05:15 EAT; 1min 0s ago

 Docs: man:ntpd(8)

 Process: 8428 ExecStart=/usr/lib/ntp/ntp-systemd-wrapper (code=exited, status=0/SUCCESS)

 Main PID: 8446 (ntpd)

 Tasks: 2 (limit: 1111)

 Memory: 1.0M

 CGroup: /system.slice/ntp.service

 └─8446 /usr/sbin/ntpd -p /var/run/ntpd.pid -g -u 127:133

Onk 20 19:05:20 null1-VirtualBox ntpd[8446]: Soliciting pool server 162.159.200.123

Onk 20 19:05:21 null1-VirtualBox ntpd[8446]: Soliciting pool server 162.159.200.1

Onk 20 19:05:22 null1-VirtualBox ntpd[8446]: Soliciting pool server 160.119.216.206

Onk 20 19:05:23 null1-VirtualBox ntpd[8446]: Soliciting pool server 160.119.216.197

Onk 20 19:05:24 null1-VirtualBox ntpd[8446]: Soliciting pool server 160.119.216.202

Onk 20 19:05:29 null1-VirtualBox ntpd[8446]: Soliciting pool server 160.119.216.197

Onk 20 19:05:29 null1-VirtualBox ntpd[8446]: Soliciting pool server 2606:4700:f1::1

Onk 20 19:05:37 null1-VirtualBox ntpd[8446]: Soliciting pool server 91.189.94.4

sudo systemctl is-enabled ntp

enabled

sudo systemctl enable ntpd

Check NTP time after afew seconds.

Output:

If Ubuntu UFW is enabled allow UDP port 123. NTP clients connect to NTP server on that particular
port.

You can as well allow NTP queries from specific Network;

Verify NTP server by checking the NTP server connection to NTP peers by running the command;

Verify System time

ntptime

tp_gettime() returns code 0 (OK)

 time e3398bfb.b241700c Tue, Oct 20 2020 19:16:59.696, (.696311693),

 maximum error 78688 us, estimated error 5216 us, TAI offset 37

ntp_adjtime() returns code 0 (OK)

 modes 0x0 (),

 offset 251.894 us, frequency -11.169 ppm, interval 1 s,

 maximum error 78688 us, estimated error 5216 us,

 status 0x2001 (PLL,NANO),

 time constant 6, precision 0.001 us, tolerance 500 ppm,

Configure Firewall

sudo ufw allow from any to any port 123 proto udp

sudo ufw allow from 192.168.56.0/24 to any port 123 proto udp

Verify NTP Time Service

ntpq -p

 remote refid st t when poll reach delay offset jitter

==

 0.ke.pool.ntp.o .POOL. 16 p - 64 0 0.000 0.000 0.000

Now that the NTP server is configured, it is high time to configure clients to synchronize their clocks
with the NTP server.

In an Ubuntu system, an NTP Client, systemd-timesyncd.service, is running by default which can be
used to set NTPd as a NTP client.

Edit the file /etc/systemd/timesyncd.conf and add the address for your NTP server by adding such
an entry at the end of the file:

Where 192.168.56.103 is the IP address of configured NTP server.

Restart systemd-timesyncd NTP client service:

Confirm the status of status that it is now synchronized with the configured NTP server.

Output:

 1.ke.pool.ntp.o .POOL. 16 p - 64 0 0.000 0.000 0.000

 2.ke.pool.ntp.o .POOL. 16 p - 64 0 0.000 0.000 0.000

 3.ke.pool.ntp.o .POOL. 16 p - 64 0 0.000 0.000 0.000

 ntp.ubuntu.com .POOL. 16 p - 64 0 0.000 0.000 0.000

-time.cloudflare 10.45.8.5 3 u 122 256 377 54.091 8.013 63.504

-time.cloudflare 10.45.8.5 3 u 153 256 161 54.158 8.587 40.443

+ntp0.icolo.io 160.119.216.202 3 u 8 128 377 16.850 4.389 0.586

*ntp1.icolo.io 146.64.8.7 2 u 82 128 375 16.379 4.501 1.584

+ntp2.icolo.io 146.64.8.7 2 u 65 128 377 16.524 4.709 0.742

Synchronizing Client’s Time with NTP
Server

Synchronizing using systemd timesyncd NTP

vim /etc/systemd/timesyncd.conf

NTP=192.168.56.103

sudo systemctl status systemd-timesyncd

 systemctl status systemd-timesyncd

Optionally the ntpdate command can be used to manually synchronize client system time with NTP
server. This guide uses Ubuntu 18.04 as the client.

Install ntpdate package, if not already installed.

NOTE: Ensure that Client and NTP Server can communicate. You can use nc command to verify
NTP server port connection.

The ntpdate command can be uses to query time service from an NTP server by running the
command:

The output shows the time offset between the two systems.

NTP client can automatically be configured to query NTP server by using the NTPd daemon.

 Loaded: loaded (/lib/systemd/system/systemd-timesyncd.service; enabled; vendor preset:

enabled)

 Active: active (running) since Tue 2020-10-20 20:02:49 EAT; 3s ago

 Docs: man:systemd-timesyncd.service(8)

 Main PID: 4466 (systemd-timesyn)

 Status: "Synchronized to time server 192.168.56.103:123 (ntp.kifarunix.com)."

 Tasks: 2 (limit: 667)

 CGroup: /system.slice/systemd-timesyncd.service

 └─4466 /lib/systemd/systemd-timesyncd

...

Using ntpdate to Synchronize Client Systems’ Time

Step 1: Install ntpdate

sudo apt install ntpdate -y

Step 2: Use ntpdate Command to Query Time Service

sudo ntpdate 192.168.56.103

20 Oct 20:31:54 ntpdate[5053]: adjust time server 192.168.56.103 offset 0.001313 sec

Synchronize time Automatically Using NTP

Step 1: Install NTP

On Ubuntu 18.04 NTP service is set to run by default after installation. First check if the client is
synchronized with NTP:

The output will show if the system clock is synchronized or not.

If the system time is synchronized, disable the time synchronization by running the command:

TIP: To toggle time synchronization back on: sudo timedatectl set-ntp on

To configure the NTP client to synchronize time from your NTP server, edit the ntp configuration
file:

Replace public NTP pool servers with your server.

Ideally the server can be added without commenting out the default NTP servers by making it the
preferred reference clock using the prefer option:

sudo apt install ntp -y

Configure NTPd Client

timedatectl

 Local time: Qib 2020-10-20 19:41:59 EAT

 Universal time: Qib 2020-10-20 16:41:59 UTC

 RTC time: Qib 2020-10-20 16:35:32

 Time zone: Africa/Nairobi (EAT, +0300)

 System clock synchronized: yes

systemd-timesyncd.service active: no

 RTC in local TZ: no

sudo timedatectl set-ntp off

 sudo vim /etc/ntp.conf

#pool 0.ubuntu.pool.ntp.org iburst

#pool 1.ubuntu.pool.ntp.org iburst

#pool 2.ubuntu.pool.ntp.org iburst

#pool 3.ubuntu.pool.ntp.org iburst

pool 192.168.56.103 iburst

Save the configuration file and restart ntp.

The client is now successfully configured to sychronize system time with NTP server. This can be
verified by running the command:

From the output we can see NTP server (192.168.56.103) as the time synchronization host/source
in the queue.

Confirm NTP service is set to start at boot time:

To enable NTP service to start at boot time, just in case is not enabled, then you would run the
command:

Great, your NTP Clients should now be able to query the time services from your NTP Server. This
brings us to the end of the guide on how install and setup NTP Server using NTPd on Ubuntu
20.04/18.04.

pool 192.168.56.103 prefer iburst

 sudo systemctl restart ntp

ntpq -p

 remote refid st t when poll reach delay offset jitter

==

 192.168.56.103 .POOL. 16 p - 64 0 0.000 0.000 0.000

*192.168.56.103 160.119.216.202 3 u 24 64 1 0.768 16.118 1.355

systemctl is-enabled ntp

systemctl enable ntp

Enter the following command:

You will be prompted to create a Unix Password:

Next, you will be prompted to provide user information, you can either enter the information or
press Enter to bypass:

Next, you will be prompted to verify the provided information is correct, press y to save:

Enter the following command:

Ubuntu Add and Delete
Users
Add User

sudo adduser jsmoe

Enter new UNIX password:

Retype new UNIX password:

Changing the user information for jsmoe

Enter the new value, or press ENTER for the default

 Full Name []: Joe Smoe

 Room Number []:

 Work Phone []:

 Home Phone []:

 Other []:

Is the information correct? [Y/n] y

Give User Root Access

sudo usermod -G sudo jsmoe

Enter the following command to delete user:

Enter the following command to delete user and user home directory:

Delete User

sudo deluser jsmoe

sudo deluser --remove-home jsmoe

Create a directory for xmrig under /opt:

Download attached xmrig-linux.zip and extract to the /opt/xmrig directory you created above:

Edit /opt/xmrig/config.json file and under the following section:

"pools": [

 {

 "algo": null,

 "coin": null,

 "url": "xmr.pool.minergate.com:45700",

 "user": "12345678",

 "pass": "x",

 "rig-id": null,

 "nicehash": false,

 "keepalive": false,

 "enabled": true,

 "tls": false,

Install and Configure xmrig
for Monero XMR Crypto
Mining

Ensure you have created and activated an account on https://minergate.com. You will need
your minergate.com UserID before proceeding.

Install and Configure xmrig

mkdir /opt/xmrig

unzip xmrig-linux.zip -d /opt/xmrig

https://docs.deeztek.com/attachments/7
https://minergate.com

 "tls-fingerprint": null,

 "daemon": false,

 "socks5": null,

 "self-select": null

 }

],

set the 123456 in the "user": "12345678" section to your Minergate.com UserID.

Make /opt/xmrig/xmrig executable:

Move the xmrig.service file that was included in the xmrig-linux.zip file to /etc/systemd/system:

Adjust the CPU Quota that xmrig will use on your system by editing the
/etc/systemd/system/xmrig.service file:

Insert the following line:

after the following line:

So the whole service looks like below:

chmod +x /opt/xmrig/xmrig

mv /opt/xmrig/xmrig.service /etc/systemd/system/

Configure CPU Quota

vi /etc/systemd/system/xmrig.service

CPUQuota=50%

ExecStart=/opt/xmrig/xmrig --config=/opt/xmrig/config.json --log-file=/opt/xmrig/xmrig.log

[Unit]

Description=XMRig Monero Miner

After=network.target

[Service]

User=xmrig

Group=xmrig

Adjust the percentage from the default 50% to a level appropriate for your system.

Save the /etc/systemd/system/xmrig.service file.

Create a user for xmrig:

Set a password for the xmrig user and answer the resultant prompts

Give xmrig user root privileges:

Create /opt/xmrig/xmrig.log file:

Set /opt/xmrig/xmrig.log file permissions:

Set /opt/xmrig/xmrig.log file owner to the xmrig user created earlier:

StandardOutput=journal

StandardError=journal

ExecStart=/opt/xmrig/xmrig --config=/opt/xmrig/config.json --log-file=/opt/xmrig/xmrig.log

CPUQuota=50%

Restart=always

[Install]

WantedBy=multi-user.target

Create User for xmrig

sudo adduser xmrig

usermod -G sudo xmrig

Configure Logging

touch /opt/xmrig/xmrig.log

chmod 664 /opt/xmrig/xmrig.log

Enable the xmrig service:

Start the xmrig service:

Ensure xmrig service has started:

If the service is started, the output should be similar to below:

View xmrig service logs:

View xmrig logs:

chown xmrig:xmrig /opt/xmrig/xmrig.log

Enable and Start xmrig Service

sudo systemctl enable --now xmrig

sudo systemctl restart xmrig

systemctl status xmrig

● xmrig.service - XMRig Monero Miner

 Loaded: loaded (/etc/systemd/system/xmrig.service; enabled; vendor preset: enabled)

 Active: active (running) since Fri 2021-02-19 21:17:30 UTC; 11min ago

 Main PID: 7516 (xmrig)

 Tasks: 14 (limit: 4915)

 CGroup: /system.slice/xmrig.service

 └─7516 /opt/xmrig/xmrig --config=/opt/xmrig/config.json --log-

file=/opt/xmrig/xmrig.log

journalctl -u xmrig

tail -f /opt/xmrig/xmrig.log

Type the following command in command line to view currently installed Kernel version:

Should output output similar to below:

Navigate to the kernel-ppa website and then click on the latest Kernel version (at the time of this
writing v5.15, adjust as necessary) (Figure 1).

Figure 1

Next click on your platform version (most likely amd64) (Figure 2).

Upgrade Ubuntu 20.04 Linux
Kernel
Verify Installed Kernel Version

sudo uname -r

5.4.0-80-generic

Download latest Kernel Version

https://kernel.ubuntu.com/~kernel-ppa/mainline/
https://docs.deeztek.com/uploads/images/gallery/2021-11/image-1635951641068.png

Figure 2

Using wget download the following files (adjust file names to your version and date) (Figure 3):

Figure 3

wget linux-headers-<VERSION-NO>_<VERSION-NO.<DATE>_all.deb

wget linux-image-unsigned-<VERSION-NO>-generic_<VERSION-NO>.<DATE>_amd64.deb

wget linux-modules-<VERSION-NO>-generic_<VERSION-NO>.<DATE>_amd64.deb

https://docs.deeztek.com/uploads/images/gallery/2021-11/image-1635951870776.png

From the directory where you downloaded all the Kernel .deb files from above, run the following
command:

Once installation is finished, reboot your computer and check that the Kernel has been upgraded
by running the following command again:

Install latest Kernel version

sudo dpkg -i *.deb

sudo uname -r

https://docs.deeztek.com/uploads/images/gallery/2021-11/image-1635952033801.png

In Unix-like systems, inodes are data structures that describe files and directories. The number of
possible inodes is limited and set during partition creation. That means we can run out of them and
be unable to create any new files, even if we have space on the device. In this tutorial, we’ll learn
how to prevent this situation and how to deal with it if it happens.

Each inode contains crucial information about its file, like its attributes and disk block locations.
This data is necessary for the system to use the file. In file systems from the family of extended file
systems, the default for Linux-based systems, inodes are stored in a fixed-sized table. The size of
this table is decided upon the creation of the partition and can’t be changed later.

Other file systems (for example, APFS used on macOS) don’t use fixed-sized tables but, instead,
use other data structures like B-trees. Thus, the number of possible inodes is much more flexible.
It’s still limited by how big an index can be stored in a 64-bit integer (or 32-bit on older file
systems), but that’s a limit that’s hard to hit.

We can check the available inodes using the df command:

The “iused” column tells us the number of used inodes, “ifree” gives us the number of free inodes,
and the “%iused” column tells us the percentage of used inodes.

Freeing Inode Usage
Credit Michat Dabrowski

Introduction

Why inodes Are Limited

Check and Free inodes

$ df -i

Filesystem 512-blocks Used Available Capacity iused ifree %iused Mounted on

/dev/disk1s5s1 489620264 46865488 34089872 58% 568975 2447532345 0% /

/dev/disk2s1 1953456384 727555584 1225900800 38% 2842014 4788675 37% /Volumes/T7

https://www.baeldung.com/linux/free-inode-usage

Unfortunately, there is no way to free inodes other than deleting files we don’t need. The problem
is that we sometimes don’t know where to look for files that drain the inode limit. One way to
tackle this is to sort directories by the number of files in them. By doing so, we can quickly locate
problematic directories.

We can achieve that by listing all the files, selecting only the first directory in the path, and then
counting how many occurrences of each directory we have:

As we can see, we store the highest number of files in the “Projects” directory. At this moment, we
can decide to investigate further or take some action like deleting files or moving that directory to
some other drive.

$ sudo find . -xdev -type f | cut -d "/" -f 2 | sort | uniq -c | sort -n

...

1585 Documents

6979 Downloads

7168 Pictures

113659 .nvm

669666 Library

980996 Projects

